There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sqrt(xsqrt(xsqrt(x)))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sqrt(xsqrt(xsqrt(x)))\right)}{dx}\\=&\frac{(sqrt(xsqrt(x)) + \frac{x(sqrt(x) + \frac{x*\frac{1}{2}}{(x)^{\frac{1}{2}}})*\frac{1}{2}}{(xsqrt(x))^{\frac{1}{2}}})*\frac{1}{2}}{(xsqrt(xsqrt(x)))^{\frac{1}{2}}}\\=&\frac{x^{\frac{1}{2}}}{8sqrt(x)^{\frac{1}{2}}sqrt(xsqrt(x))^{\frac{1}{2}}} + \frac{sqrt(x)^{\frac{1}{2}}}{4sqrt(xsqrt(x))^{\frac{1}{2}}} + \frac{sqrt(xsqrt(x))^{\frac{1}{2}}}{2x^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !