There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{2({(2 - 3{x}^{2})}^{3})}{27} - \frac{4(2 - 3{x}^{2})}{9}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = -2x^{6} + 4x^{4} - \frac{4}{3}x^{2} - \frac{8}{27}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -2x^{6} + 4x^{4} - \frac{4}{3}x^{2} - \frac{8}{27}\right)}{dx}\\=&-2*6x^{5} + 4*4x^{3} - \frac{4}{3}*2x + 0\\=&-12x^{5} + 16x^{3} - \frac{8x}{3}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !