Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 3 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ third\ derivative\ of\ function\ \frac{(x + 3)(x - 2)}{(x - 3)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x^{2}}{(x - 3)} + \frac{x}{(x - 3)} - \frac{6}{(x - 3)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x^{2}}{(x - 3)} + \frac{x}{(x - 3)} - \frac{6}{(x - 3)}\right)}{dx}\\=&(\frac{-(1 + 0)}{(x - 3)^{2}})x^{2} + \frac{2x}{(x - 3)} + (\frac{-(1 + 0)}{(x - 3)^{2}})x + \frac{1}{(x - 3)} - 6(\frac{-(1 + 0)}{(x - 3)^{2}})\\=&\frac{-x^{2}}{(x - 3)^{2}} + \frac{2x}{(x - 3)} - \frac{x}{(x - 3)^{2}} + \frac{6}{(x - 3)^{2}} + \frac{1}{(x - 3)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-x^{2}}{(x - 3)^{2}} + \frac{2x}{(x - 3)} - \frac{x}{(x - 3)^{2}} + \frac{6}{(x - 3)^{2}} + \frac{1}{(x - 3)}\right)}{dx}\\=&-(\frac{-2(1 + 0)}{(x - 3)^{3}})x^{2} - \frac{2x}{(x - 3)^{2}} + 2(\frac{-(1 + 0)}{(x - 3)^{2}})x + \frac{2}{(x - 3)} - (\frac{-2(1 + 0)}{(x - 3)^{3}})x - \frac{1}{(x - 3)^{2}} + 6(\frac{-2(1 + 0)}{(x - 3)^{3}}) + (\frac{-(1 + 0)}{(x - 3)^{2}})\\=&\frac{2x^{2}}{(x - 3)^{3}} - \frac{4x}{(x - 3)^{2}} + \frac{2x}{(x - 3)^{3}} - \frac{12}{(x - 3)^{3}} - \frac{2}{(x - 3)^{2}} + \frac{2}{(x - 3)}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{2x^{2}}{(x - 3)^{3}} - \frac{4x}{(x - 3)^{2}} + \frac{2x}{(x - 3)^{3}} - \frac{12}{(x - 3)^{3}} - \frac{2}{(x - 3)^{2}} + \frac{2}{(x - 3)}\right)}{dx}\\=&2(\frac{-3(1 + 0)}{(x - 3)^{4}})x^{2} + \frac{2*2x}{(x - 3)^{3}} - 4(\frac{-2(1 + 0)}{(x - 3)^{3}})x - \frac{4}{(x - 3)^{2}} + 2(\frac{-3(1 + 0)}{(x - 3)^{4}})x + \frac{2}{(x - 3)^{3}} - 12(\frac{-3(1 + 0)}{(x - 3)^{4}}) - 2(\frac{-2(1 + 0)}{(x - 3)^{3}}) + 2(\frac{-(1 + 0)}{(x - 3)^{2}})\\=&\frac{-6x^{2}}{(x - 3)^{4}} + \frac{12x}{(x - 3)^{3}} - \frac{6x}{(x - 3)^{4}} + \frac{36}{(x - 3)^{4}} + \frac{6}{(x - 3)^{3}} - \frac{6}{(x - 3)^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return