There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {y}^{2}e^{{x}^{2}y}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = y^{2}e^{yx^{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( y^{2}e^{yx^{2}}\right)}{dx}\\=&y^{2}e^{yx^{2}}y*2x\\=&2y^{3}xe^{yx^{2}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 2y^{3}xe^{yx^{2}}\right)}{dx}\\=&2y^{3}e^{yx^{2}} + 2y^{3}xe^{yx^{2}}y*2x\\=&2y^{3}e^{yx^{2}} + 4y^{4}x^{2}e^{yx^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !