Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{sprt({a}^{2} + {x}^{2})}{p} + \frac{sprt({b}^{2} + {(l - x)}^{2})}{q}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = srta^{2} + srtx^{2} + \frac{sprtb^{2}}{q} - \frac{2sprtlx}{q} + \frac{sprtl^{2}}{q} + \frac{sprtx^{2}}{q}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( srta^{2} + srtx^{2} + \frac{sprtb^{2}}{q} - \frac{2sprtlx}{q} + \frac{sprtl^{2}}{q} + \frac{sprtx^{2}}{q}\right)}{dx}\\=&0 + srt*2x + 0 - \frac{2sprtl}{q} + 0 + \frac{sprt*2x}{q}\\=&2srtx - \frac{2sprtl}{q} + \frac{2sprtx}{q}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return