There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{sqrt({a}^{2} + {x}^{2})}{p} + \frac{sqrt({b}^{2} + {(l - x)}^{2})}{q}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{sqrt(a^{2} + x^{2})}{p} + \frac{sqrt(b^{2} - 2lx + l^{2} + x^{2})}{q}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{sqrt(a^{2} + x^{2})}{p} + \frac{sqrt(b^{2} - 2lx + l^{2} + x^{2})}{q}\right)}{dx}\\=&\frac{(0 + 2x)*\frac{1}{2}}{p(a^{2} + x^{2})^{\frac{1}{2}}} + \frac{(0 - 2l + 0 + 2x)*\frac{1}{2}}{q(b^{2} - 2lx + l^{2} + x^{2})^{\frac{1}{2}}}\\=&\frac{x}{(a^{2} + x^{2})^{\frac{1}{2}}p} - \frac{l}{(b^{2} - 2lx + l^{2} + x^{2})^{\frac{1}{2}}q} + \frac{x}{(b^{2} - 2lx + l^{2} + x^{2})^{\frac{1}{2}}q}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !