There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{({x}^{(ln(p)i)})}{(p{i}^{ln(x)})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{{x}^{(iln(p))}{i}^{(-ln(x))}}{p}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{{x}^{(iln(p))}{i}^{(-ln(x))}}{p}\right)}{dx}\\=&\frac{({x}^{(iln(p))}((\frac{i*0}{(p)})ln(x) + \frac{(iln(p))(1)}{(x)})){i}^{(-ln(x))}}{p} + \frac{{x}^{(iln(p))}({i}^{(-ln(x))}((\frac{-1}{(x)})ln(i) + \frac{(-ln(x))(0)}{(i)}))}{p}\\=&\frac{i{x}^{(iln(p))}{i}^{(-ln(x))}ln(p)}{px} - \frac{{i}^{(-ln(x))}{x}^{(iln(p))}ln(i)}{px}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !