There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ 4{x}^{\frac{1}{2}} + (\frac{1}{4}){x}^{(\frac{-1}{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 4x^{\frac{1}{2}} + \frac{\frac{1}{4}}{x^{\frac{1}{2}}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 4x^{\frac{1}{2}} + \frac{\frac{1}{4}}{x^{\frac{1}{2}}}\right)}{dx}\\=&\frac{4*\frac{1}{2}}{x^{\frac{1}{2}}} + \frac{\frac{1}{4}*\frac{-1}{2}}{x^{\frac{3}{2}}}\\=&\frac{2}{x^{\frac{1}{2}}} - \frac{1}{8x^{\frac{3}{2}}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{2}{x^{\frac{1}{2}}} - \frac{1}{8x^{\frac{3}{2}}}\right)}{dx}\\=&\frac{2*\frac{-1}{2}}{x^{\frac{3}{2}}} - \frac{\frac{-3}{2}}{8x^{\frac{5}{2}}}\\=&\frac{-1}{x^{\frac{3}{2}}} + \frac{3}{16x^{\frac{5}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !