There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ 5{e}^{(3x)}(3{x}^{2} - 7)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 15x^{2}{e}^{(3x)} - 35{e}^{(3x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 15x^{2}{e}^{(3x)} - 35{e}^{(3x)}\right)}{dx}\\=&15*2x{e}^{(3x)} + 15x^{2}({e}^{(3x)}((3)ln(e) + \frac{(3x)(0)}{(e)})) - 35({e}^{(3x)}((3)ln(e) + \frac{(3x)(0)}{(e)}))\\=&30x{e}^{(3x)} + 45x^{2}{e}^{(3x)} - 105{e}^{(3x)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 30x{e}^{(3x)} + 45x^{2}{e}^{(3x)} - 105{e}^{(3x)}\right)}{dx}\\=&30{e}^{(3x)} + 30x({e}^{(3x)}((3)ln(e) + \frac{(3x)(0)}{(e)})) + 45*2x{e}^{(3x)} + 45x^{2}({e}^{(3x)}((3)ln(e) + \frac{(3x)(0)}{(e)})) - 105({e}^{(3x)}((3)ln(e) + \frac{(3x)(0)}{(e)}))\\=&-285{e}^{(3x)} + 180x{e}^{(3x)} + 135x^{2}{e}^{(3x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !