There are 1 questions in this calculation: for each question, the 9 derivative of z is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 9th\ derivative\ of\ function\ \frac{cos({z}^{2})}{z}\ with\ respect\ to\ z:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{cos(z^{2})}{z}\\\\ &\color{blue}{The\ 9th\ derivative\ of\ function:} \\=&\frac{-362880cos(z^{2})}{z^{10}} - \frac{362880sin(z^{2})}{z^{8}} + \frac{181440cos(z^{2})}{z^{6}} + \frac{60480sin(z^{2})}{z^{4}} - \frac{15120cos(z^{2})}{z^{2}} - 6048sin(z^{2}) - 24192z^{2}cos(z^{2}) + 25344z^{4}sin(z^{2}) + 6912z^{6}cos(z^{2}) - 512z^{8}sin(z^{2})\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !