There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ f({2}^{x})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = f{2}^{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( f{2}^{x}\right)}{dx}\\=&f({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))\\=&f{2}^{x}ln(2)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( f{2}^{x}ln(2)\right)}{dx}\\=&f({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))ln(2) + \frac{f{2}^{x}*0}{(2)}\\=&f{2}^{x}ln^{2}(2)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !