There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ arccos(cos(sin(cot(lg(cosh(x))))))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( arccos(cos(sin(cot(lg(cosh(x))))))\right)}{dx}\\=&(\frac{-(\frac{-sin(sin(cot(lg(cosh(x)))))cos(cot(lg(cosh(x))))*-csc^{2}(lg(cosh(x)))sinh(x)}{ln{10}(cosh(x))})}{((1 - (cos(sin(cot(lg(cosh(x))))))^{2})^{\frac{1}{2}})})\\=&\frac{-sin(sin(cot(lg(cosh(x)))))cos(cot(lg(cosh(x))))csc^{2}(lg(cosh(x)))sinh(x)}{(-cos^{2}(sin(cot(lg(cosh(x))))) + 1)^{\frac{1}{2}}ln{10}cosh(x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !