There are 1 questions in this calculation: for each question, the 3 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ third\ derivative\ of\ function\ sin(x) - sin(sin(x))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sin(x) - sin(sin(x))\right)}{dx}\\=&cos(x) - cos(sin(x))cos(x)\\=& - cos(x)cos(sin(x)) + cos(x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( - cos(x)cos(sin(x)) + cos(x)\right)}{dx}\\=& - -sin(x)cos(sin(x)) - cos(x)*-sin(sin(x))cos(x) + -sin(x)\\=&sin(x)cos(sin(x)) + sin(sin(x))cos^{2}(x) - sin(x)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( sin(x)cos(sin(x)) + sin(sin(x))cos^{2}(x) - sin(x)\right)}{dx}\\=&cos(x)cos(sin(x)) + sin(x)*-sin(sin(x))cos(x) + cos(sin(x))cos(x)cos^{2}(x) + sin(sin(x))*-2cos(x)sin(x) - cos(x)\\=&cos(x)cos(sin(x)) - 3sin(x)sin(sin(x))cos(x) + cos^{3}(x)cos(sin(x)) - cos(x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !