Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (\frac{({(2x + 1)}^{3})}{({(3x - 1)}^{4})})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{8x^{3}}{(3x - 1)^{4}} + \frac{12x^{2}}{(3x - 1)^{4}} + \frac{6x}{(3x - 1)^{4}} + \frac{1}{(3x - 1)^{4}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{8x^{3}}{(3x - 1)^{4}} + \frac{12x^{2}}{(3x - 1)^{4}} + \frac{6x}{(3x - 1)^{4}} + \frac{1}{(3x - 1)^{4}}\right)}{dx}\\=&8(\frac{-4(3 + 0)}{(3x - 1)^{5}})x^{3} + \frac{8*3x^{2}}{(3x - 1)^{4}} + 12(\frac{-4(3 + 0)}{(3x - 1)^{5}})x^{2} + \frac{12*2x}{(3x - 1)^{4}} + 6(\frac{-4(3 + 0)}{(3x - 1)^{5}})x + \frac{6}{(3x - 1)^{4}} + (\frac{-4(3 + 0)}{(3x - 1)^{5}})\\=&\frac{-96x^{3}}{(3x - 1)^{5}} + \frac{24x^{2}}{(3x - 1)^{4}} - \frac{144x^{2}}{(3x - 1)^{5}} + \frac{24x}{(3x - 1)^{4}} - \frac{72x}{(3x - 1)^{5}} - \frac{12}{(3x - 1)^{5}} + \frac{6}{(3x - 1)^{4}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return