There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ sqrt(x) + lg(35) - {5}^{7}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sqrt(x) + lg(35) - 78125\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sqrt(x) + lg(35) - 78125\right)}{dx}\\=&\frac{\frac{1}{2}}{(x)^{\frac{1}{2}}} + \frac{0}{ln{10}(35)} + 0\\=&\frac{1}{2x^{\frac{1}{2}}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{1}{2x^{\frac{1}{2}}}\right)}{dx}\\=&\frac{\frac{-1}{2}}{2x^{\frac{3}{2}}}\\=&\frac{-1}{4x^{\frac{3}{2}}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{-1}{4x^{\frac{3}{2}}}\right)}{dx}\\=&\frac{-\frac{-3}{2}}{4x^{\frac{5}{2}}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{\frac{3}{8}}{x^{\frac{5}{2}}}\right)}{dx}\\=&\frac{\frac{3}{8}*\frac{-5}{2}}{x^{\frac{7}{2}}}\\=&\frac{-15}{16x^{\frac{7}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !