There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ cos(x) - sin(2)x + e^{π} - sqrt(lg(56) - ln(56))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = cos(x) - xsin(2) + e^{π} - sqrt(lg(56) - ln(56))\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( cos(x) - xsin(2) + e^{π} - sqrt(lg(56) - ln(56))\right)}{dx}\\=&-sin(x) - sin(2) - xcos(2)*0 + e^{π}*0 - \frac{(\frac{0}{ln{10}(56)} - \frac{0}{(56)})*\frac{1}{2}}{(lg(56) - ln(56))^{\frac{1}{2}}}\\=&-sin(x) - sin(2)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !