There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{{(\frac{(x - 1)(x - 2)(x - 4)}{(x - 3)})}^{1}}{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{\frac{1}{2}x^{3}}{(x - 3)} - \frac{\frac{7}{2}x^{2}}{(x - 3)} + \frac{7x}{(x - 3)} - \frac{4}{(x - 3)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{\frac{1}{2}x^{3}}{(x - 3)} - \frac{\frac{7}{2}x^{2}}{(x - 3)} + \frac{7x}{(x - 3)} - \frac{4}{(x - 3)}\right)}{dx}\\=&\frac{1}{2}(\frac{-(1 + 0)}{(x - 3)^{2}})x^{3} + \frac{\frac{1}{2}*3x^{2}}{(x - 3)} - \frac{7}{2}(\frac{-(1 + 0)}{(x - 3)^{2}})x^{2} - \frac{\frac{7}{2}*2x}{(x - 3)} + 7(\frac{-(1 + 0)}{(x - 3)^{2}})x + \frac{7}{(x - 3)} - 4(\frac{-(1 + 0)}{(x - 3)^{2}})\\=&\frac{-x^{3}}{2(x - 3)^{2}} + \frac{3x^{2}}{2(x - 3)} + \frac{7x^{2}}{2(x - 3)^{2}} - \frac{7x}{(x - 3)} - \frac{7x}{(x - 3)^{2}} + \frac{4}{(x - 3)^{2}} + \frac{7}{(x - 3)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !