There are 1 questions in this calculation: for each question, the 10 derivative of z is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 10th\ derivative\ of\ function\ {({z}^{3} - 3)}^{\frac{1}{2}}\ with\ respect\ to\ z:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (z^{3} - 3)^{\frac{1}{2}}\\\\ &\color{blue}{The\ 10th\ derivative\ of\ function:} \\=&\frac{-2034794586825z^{20}}{1024(z^{3} - 3)^{\frac{19}{2}}} + \frac{1795406988375z^{17}}{256(z^{3} - 3)^{\frac{17}{2}}} - \frac{305884153575z^{14}}{32(z^{3} - 3)^{\frac{15}{2}}} + \frac{50128172325z^{11}}{8(z^{3} - 3)^{\frac{13}{2}}} - \frac{3978426375z^{8}}{2(z^{3} - 3)^{\frac{11}{2}}} + \frac{265228425z^{5}}{(z^{3} - 3)^{\frac{9}{2}}} - \frac{9355500z^{2}}{(z^{3} - 3)^{\frac{7}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !