There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {x}^{(\frac{2}{3})}{(x - 2)}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{\frac{8}{3}} - 4x^{\frac{5}{3}} + 4x^{\frac{2}{3}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{\frac{8}{3}} - 4x^{\frac{5}{3}} + 4x^{\frac{2}{3}}\right)}{dx}\\=&\frac{8}{3}x^{\frac{5}{3}} - 4*\frac{5}{3}x^{\frac{2}{3}} + \frac{4*\frac{2}{3}}{x^{\frac{1}{3}}}\\=&\frac{8x^{\frac{5}{3}}}{3} - \frac{20x^{\frac{2}{3}}}{3} + \frac{8}{3x^{\frac{1}{3}}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{8x^{\frac{5}{3}}}{3} - \frac{20x^{\frac{2}{3}}}{3} + \frac{8}{3x^{\frac{1}{3}}}\right)}{dx}\\=&\frac{8*\frac{5}{3}x^{\frac{2}{3}}}{3} - \frac{20*\frac{2}{3}}{3x^{\frac{1}{3}}} + \frac{8*\frac{-1}{3}}{3x^{\frac{4}{3}}}\\=&\frac{40x^{\frac{2}{3}}}{9} - \frac{40}{9x^{\frac{1}{3}}} - \frac{8}{9x^{\frac{4}{3}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !