Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{{(x - e^{-a} + 1)}^{2}}{(x + a)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{2xe^{-a}}{(x + a)} + \frac{x^{2}}{(x + a)} + \frac{2x}{(x + a)} + \frac{e^{{-a}*{2}}}{(x + a)} - \frac{2e^{-a}}{(x + a)} + \frac{1}{(x + a)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{2xe^{-a}}{(x + a)} + \frac{x^{2}}{(x + a)} + \frac{2x}{(x + a)} + \frac{e^{{-a}*{2}}}{(x + a)} - \frac{2e^{-a}}{(x + a)} + \frac{1}{(x + a)}\right)}{dx}\\=& - 2(\frac{-(1 + 0)}{(x + a)^{2}})xe^{-a} - \frac{2e^{-a}}{(x + a)} - \frac{2xe^{-a}*0}{(x + a)} + (\frac{-(1 + 0)}{(x + a)^{2}})x^{2} + \frac{2x}{(x + a)} + 2(\frac{-(1 + 0)}{(x + a)^{2}})x + \frac{2}{(x + a)} + (\frac{-(1 + 0)}{(x + a)^{2}})e^{{-a}*{2}} + \frac{2e^{-a}e^{-a}*0}{(x + a)} - 2(\frac{-(1 + 0)}{(x + a)^{2}})e^{-a} - \frac{2e^{-a}*0}{(x + a)} + (\frac{-(1 + 0)}{(x + a)^{2}})\\=&\frac{2xe^{-a}}{(x + a)^{2}} - \frac{2e^{-a}}{(x + a)} - \frac{x^{2}}{(x + a)^{2}} + \frac{2x}{(x + a)} - \frac{2x}{(x + a)^{2}} - \frac{e^{{-a}*{2}}}{(x + a)^{2}} + \frac{2e^{-a}}{(x + a)^{2}} + \frac{2}{(x + a)} - \frac{1}{(x + a)^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return