There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ (xx - 2x)(xx - 2x) + 2x\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{4} - 4x^{3} + 4x^{2} + 2x\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{4} - 4x^{3} + 4x^{2} + 2x\right)}{dx}\\=&4x^{3} - 4*3x^{2} + 4*2x + 2\\=&4x^{3} - 12x^{2} + 8x + 2\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 4x^{3} - 12x^{2} + 8x + 2\right)}{dx}\\=&4*3x^{2} - 12*2x + 8 + 0\\=&12x^{2} - 24x + 8\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !