There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(1 + k){(3{x}^{2} - 2x + 3)}^{\frac{1}{2}}}{(1 + {k}^{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{(3x^{2} - 2x + 3)^{\frac{1}{2}}k}{(k^{2} + 1)} + \frac{(3x^{2} - 2x + 3)^{\frac{1}{2}}}{(k^{2} + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{(3x^{2} - 2x + 3)^{\frac{1}{2}}k}{(k^{2} + 1)} + \frac{(3x^{2} - 2x + 3)^{\frac{1}{2}}}{(k^{2} + 1)}\right)}{dx}\\=&(\frac{-(0 + 0)}{(k^{2} + 1)^{2}})(3x^{2} - 2x + 3)^{\frac{1}{2}}k + \frac{(\frac{\frac{1}{2}(3*2x - 2 + 0)}{(3x^{2} - 2x + 3)^{\frac{1}{2}}})k}{(k^{2} + 1)} + 0 + (\frac{-(0 + 0)}{(k^{2} + 1)^{2}})(3x^{2} - 2x + 3)^{\frac{1}{2}} + \frac{(\frac{\frac{1}{2}(3*2x - 2 + 0)}{(3x^{2} - 2x + 3)^{\frac{1}{2}}})}{(k^{2} + 1)}\\=&\frac{3kx}{(3x^{2} - 2x + 3)^{\frac{1}{2}}(k^{2} + 1)} - \frac{k}{(3x^{2} - 2x + 3)^{\frac{1}{2}}(k^{2} + 1)} + \frac{3x}{(3x^{2} - 2x + 3)^{\frac{1}{2}}(k^{2} + 1)} - \frac{1}{(3x^{2} - 2x + 3)^{\frac{1}{2}}(k^{2} + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !