There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (2x - 2)(1 + (n - 1)x){\frac{1}{((n - 1){x}^{2} + 1)}}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{2x^{2}}{(nx^{2} - x^{2} + 1)^{2}} + \frac{2nx^{2}}{(nx^{2} - x^{2} + 1)^{2}} + \frac{4x}{(nx^{2} - x^{2} + 1)^{2}} - \frac{2nx}{(nx^{2} - x^{2} + 1)^{2}} - \frac{2}{(nx^{2} - x^{2} + 1)^{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{2x^{2}}{(nx^{2} - x^{2} + 1)^{2}} + \frac{2nx^{2}}{(nx^{2} - x^{2} + 1)^{2}} + \frac{4x}{(nx^{2} - x^{2} + 1)^{2}} - \frac{2nx}{(nx^{2} - x^{2} + 1)^{2}} - \frac{2}{(nx^{2} - x^{2} + 1)^{2}}\right)}{dx}\\=& - 2(\frac{-2(n*2x - 2x + 0)}{(nx^{2} - x^{2} + 1)^{3}})x^{2} - \frac{2*2x}{(nx^{2} - x^{2} + 1)^{2}} + 2(\frac{-2(n*2x - 2x + 0)}{(nx^{2} - x^{2} + 1)^{3}})nx^{2} + \frac{2n*2x}{(nx^{2} - x^{2} + 1)^{2}} + 4(\frac{-2(n*2x - 2x + 0)}{(nx^{2} - x^{2} + 1)^{3}})x + \frac{4}{(nx^{2} - x^{2} + 1)^{2}} - 2(\frac{-2(n*2x - 2x + 0)}{(nx^{2} - x^{2} + 1)^{3}})nx - \frac{2n}{(nx^{2} - x^{2} + 1)^{2}} - 2(\frac{-2(n*2x - 2x + 0)}{(nx^{2} - x^{2} + 1)^{3}})\\=&\frac{16nx^{3}}{(nx^{2} - x^{2} + 1)^{3}} - \frac{8x^{3}}{(nx^{2} - x^{2} + 1)^{3}} - \frac{4x}{(nx^{2} - x^{2} + 1)^{2}} - \frac{8n^{2}x^{3}}{(nx^{2} - x^{2} + 1)^{3}} + \frac{4nx}{(nx^{2} - x^{2} + 1)^{2}} - \frac{24nx^{2}}{(nx^{2} - x^{2} + 1)^{3}} + \frac{16x^{2}}{(nx^{2} - x^{2} + 1)^{3}} + \frac{8n^{2}x^{2}}{(nx^{2} - x^{2} + 1)^{3}} + \frac{8nx}{(nx^{2} - x^{2} + 1)^{3}} - \frac{2n}{(nx^{2} - x^{2} + 1)^{2}} - \frac{8x}{(nx^{2} - x^{2} + 1)^{3}} + \frac{4}{(nx^{2} - x^{2} + 1)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !