There are 1 questions in this calculation: for each question, the 3 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ third\ derivative\ of\ function\ arctan(x) - arcsin(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( arctan(x) - arcsin(x)\right)}{dx}\\=&(\frac{(1)}{(1 + (x)^{2})}) - (\frac{(1)}{((1 - (x)^{2})^{\frac{1}{2}})})\\=&\frac{1}{(x^{2} + 1)} - \frac{1}{(-x^{2} + 1)^{\frac{1}{2}}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{1}{(x^{2} + 1)} - \frac{1}{(-x^{2} + 1)^{\frac{1}{2}}}\right)}{dx}\\=&(\frac{-(2x + 0)}{(x^{2} + 1)^{2}}) - (\frac{\frac{-1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{3}{2}}})\\=&\frac{-2x}{(x^{2} + 1)^{2}} - \frac{x}{(-x^{2} + 1)^{\frac{3}{2}}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{-2x}{(x^{2} + 1)^{2}} - \frac{x}{(-x^{2} + 1)^{\frac{3}{2}}}\right)}{dx}\\=&-2(\frac{-2(2x + 0)}{(x^{2} + 1)^{3}})x - \frac{2}{(x^{2} + 1)^{2}} - (\frac{\frac{-3}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{5}{2}}})x - \frac{1}{(-x^{2} + 1)^{\frac{3}{2}}}\\=&\frac{8x^{2}}{(x^{2} + 1)^{3}} - \frac{3x^{2}}{(-x^{2} + 1)^{\frac{5}{2}}} - \frac{2}{(x^{2} + 1)^{2}} - \frac{1}{(-x^{2} + 1)^{\frac{3}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !