There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (x + 5)(x + 3)(x + 1)(x - 1)(x + \frac{3}{2})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{5} + \frac{19}{2}x^{4} + 26x^{3} + 13x^{2} - 27x - \frac{45}{2}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{5} + \frac{19}{2}x^{4} + 26x^{3} + 13x^{2} - 27x - \frac{45}{2}\right)}{dx}\\=&5x^{4} + \frac{19}{2}*4x^{3} + 26*3x^{2} + 13*2x - 27 + 0\\=&5x^{4} + 38x^{3} + 78x^{2} + 26x - 27\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !