There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ (mcos(3)x + nsin(3)x){e}^{(2x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = mx{e}^{(2x)}cos(3) + nx{e}^{(2x)}sin(3)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( mx{e}^{(2x)}cos(3) + nx{e}^{(2x)}sin(3)\right)}{dx}\\=&m{e}^{(2x)}cos(3) + mx({e}^{(2x)}((2)ln(e) + \frac{(2x)(0)}{(e)}))cos(3) + mx{e}^{(2x)}*-sin(3)*0 + n{e}^{(2x)}sin(3) + nx({e}^{(2x)}((2)ln(e) + \frac{(2x)(0)}{(e)}))sin(3) + nx{e}^{(2x)}cos(3)*0\\=&m{e}^{(2x)}cos(3) + 2mx{e}^{(2x)}cos(3) + n{e}^{(2x)}sin(3) + 2nx{e}^{(2x)}sin(3)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( m{e}^{(2x)}cos(3) + 2mx{e}^{(2x)}cos(3) + n{e}^{(2x)}sin(3) + 2nx{e}^{(2x)}sin(3)\right)}{dx}\\=&m({e}^{(2x)}((2)ln(e) + \frac{(2x)(0)}{(e)}))cos(3) + m{e}^{(2x)}*-sin(3)*0 + 2m{e}^{(2x)}cos(3) + 2mx({e}^{(2x)}((2)ln(e) + \frac{(2x)(0)}{(e)}))cos(3) + 2mx{e}^{(2x)}*-sin(3)*0 + n({e}^{(2x)}((2)ln(e) + \frac{(2x)(0)}{(e)}))sin(3) + n{e}^{(2x)}cos(3)*0 + 2n{e}^{(2x)}sin(3) + 2nx({e}^{(2x)}((2)ln(e) + \frac{(2x)(0)}{(e)}))sin(3) + 2nx{e}^{(2x)}cos(3)*0\\=&4m{e}^{(2x)}cos(3) + 4mx{e}^{(2x)}cos(3) + 4n{e}^{(2x)}sin(3) + 4nx{e}^{(2x)}sin(3)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !