There are 1 questions in this calculation: for each question, the 15 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 15th\ derivative\ of\ function\ ln(1 + xxx)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(x^{3} + 1)\\\\ &\color{blue}{The\ 15th\ derivative\ of\ function:} \\=&\frac{1250913192847718400x^{30}}{(x^{3} + 1)^{15}} - \frac{6254565964238592000x^{27}}{(x^{3} + 1)^{14}} - \frac{5242660371428079616x^{24}}{(x^{3} + 1)^{13}} + \frac{3157805050015215616x^{21}}{(x^{3} + 1)^{12}} - \frac{7893772693718511616x^{18}}{(x^{3} + 1)^{11}} - \frac{4416804606845030400x^{15}}{(x^{3} + 1)^{10}} + \frac{1089933508984320000x^{12}}{(x^{3} + 1)^{9}} - \frac{146489605726464000x^{9}}{(x^{3} + 1)^{8}} + \frac{9073952439552000x^{6}}{(x^{3} + 1)^{7}} - \frac{176536039680000x^{3}}{(x^{3} + 1)^{6}} + \frac{261534873600}{(x^{3} + 1)^{5}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !