There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {e}^{{x}^{\frac{1}{2}}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e}^{{x}^{\frac{1}{2}}}\right)}{dx}\\=&({e}^{{x}^{\frac{1}{2}}}((({x}^{\frac{1}{2}}((0)ln(x) + \frac{(\frac{1}{2})(1)}{(x)})))ln(e) + \frac{({x}^{\frac{1}{2}})(0)}{(e)}))\\=&\frac{{e}^{x^{\frac{1}{2}}}}{2x^{\frac{1}{2}}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{{e}^{x^{\frac{1}{2}}}}{2x^{\frac{1}{2}}}\right)}{dx}\\=&\frac{\frac{-1}{2}{e}^{x^{\frac{1}{2}}}}{2x^{\frac{3}{2}}} + \frac{({e}^{x^{\frac{1}{2}}}((\frac{\frac{1}{2}}{x^{\frac{1}{2}}})ln(e) + \frac{(x^{\frac{1}{2}})(0)}{(e)}))}{2x^{\frac{1}{2}}}\\=&\frac{-{e}^{x^{\frac{1}{2}}}}{4x^{\frac{3}{2}}} + \frac{{e}^{x^{\frac{1}{2}}}}{4x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !