There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 9{e}^{(x(cos(x)))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 9{e}^{(xcos(x))}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 9{e}^{(xcos(x))}\right)}{dx}\\=&9({e}^{(xcos(x))}((cos(x) + x*-sin(x))ln(e) + \frac{(xcos(x))(0)}{(e)}))\\=&9{e}^{(xcos(x))}cos(x) - 9x{e}^{(xcos(x))}sin(x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !