There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {({x}^{4} + 2)}^{ln(x + 4)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (x^{4} + 2)^{ln(x + 4)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (x^{4} + 2)^{ln(x + 4)}\right)}{dx}\\=&((x^{4} + 2)^{ln(x + 4)}((\frac{(1 + 0)}{(x + 4)})ln(x^{4} + 2) + \frac{(ln(x + 4))(4x^{3} + 0)}{(x^{4} + 2)}))\\=&\frac{(x^{4} + 2)^{ln(x + 4)}ln(x^{4} + 2)}{(x + 4)} + \frac{4x^{3}(x^{4} + 2)^{ln(x + 4)}ln(x + 4)}{(x^{4} + 2)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !