There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ aln(x) - {e}^{(x - 1)}{\frac{1}{x}}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = aln(x) - \frac{{e}^{(x - 1)}}{x^{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( aln(x) - \frac{{e}^{(x - 1)}}{x^{2}}\right)}{dx}\\=&\frac{a}{(x)} - \frac{-2{e}^{(x - 1)}}{x^{3}} - \frac{({e}^{(x - 1)}((1 + 0)ln(e) + \frac{(x - 1)(0)}{(e)}))}{x^{2}}\\=&\frac{a}{x} + \frac{2{e}^{(x - 1)}}{x^{3}} - \frac{{e}^{(x - 1)}}{x^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !