There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sqrt(1 + 2{e}^{(3x)})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sqrt(2{e}^{(3x)} + 1)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sqrt(2{e}^{(3x)} + 1)\right)}{dx}\\=&\frac{(2({e}^{(3x)}((3)ln(e) + \frac{(3x)(0)}{(e)})) + 0)*\frac{1}{2}}{(2{e}^{(3x)} + 1)^{\frac{1}{2}}}\\=&\frac{3{e}^{(3x)}}{(2{e}^{(3x)} + 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !