There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{({x}^{3})}{({3}^{x})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{3}{3}^{(-x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{3}{3}^{(-x)}\right)}{dx}\\=&3x^{2}{3}^{(-x)} + x^{3}({3}^{(-x)}((-1)ln(3) + \frac{(-x)(0)}{(3)}))\\=&-x^{3}{3}^{(-x)}ln(3) + 3x^{2}{3}^{(-x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !