There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (x + 1)sqrt(x - 1){\frac{1}{(x + 2)}}^{\frac{1}{3}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{xsqrt(x - 1)}{(x + 2)^{\frac{1}{3}}} + \frac{sqrt(x - 1)}{(x + 2)^{\frac{1}{3}}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{xsqrt(x - 1)}{(x + 2)^{\frac{1}{3}}} + \frac{sqrt(x - 1)}{(x + 2)^{\frac{1}{3}}}\right)}{dx}\\=&(\frac{\frac{-1}{3}(1 + 0)}{(x + 2)^{\frac{4}{3}}})xsqrt(x - 1) + \frac{sqrt(x - 1)}{(x + 2)^{\frac{1}{3}}} + \frac{x(1 + 0)*\frac{1}{2}}{(x + 2)^{\frac{1}{3}}(x - 1)^{\frac{1}{2}}} + (\frac{\frac{-1}{3}(1 + 0)}{(x + 2)^{\frac{4}{3}}})sqrt(x - 1) + \frac{(1 + 0)*\frac{1}{2}}{(x + 2)^{\frac{1}{3}}(x - 1)^{\frac{1}{2}}}\\=&\frac{-xsqrt(x - 1)}{3(x + 2)^{\frac{4}{3}}} + \frac{sqrt(x - 1)}{(x + 2)^{\frac{1}{3}}} + \frac{x}{2(x + 2)^{\frac{1}{3}}(x - 1)^{\frac{1}{2}}} - \frac{sqrt(x - 1)}{3(x + 2)^{\frac{4}{3}}} + \frac{1}{2(x + 2)^{\frac{1}{3}}(x - 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !