There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {x}^{2}arcsin(3x) + \frac{ln({x}^{2} + 1)}{4}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{2}arcsin(3x) + \frac{1}{4}ln(x^{2} + 1)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{2}arcsin(3x) + \frac{1}{4}ln(x^{2} + 1)\right)}{dx}\\=&2xarcsin(3x) + x^{2}(\frac{(3)}{((1 - (3x)^{2})^{\frac{1}{2}})}) + \frac{\frac{1}{4}(2x + 0)}{(x^{2} + 1)}\\=&2xarcsin(3x) + \frac{3x^{2}}{(-9x^{2} + 1)^{\frac{1}{2}}} + \frac{x}{2(x^{2} + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !