There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {e}^{x} - {x}^{2}{e}^{\frac{1}{x}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {e}^{x} - x^{2}{e}^{\frac{1}{x}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e}^{x} - x^{2}{e}^{\frac{1}{x}}\right)}{dx}\\=&({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) - 2x{e}^{\frac{1}{x}} - x^{2}({e}^{\frac{1}{x}}((\frac{-1}{x^{2}})ln(e) + \frac{(\frac{1}{x})(0)}{(e)}))\\=&{e}^{x} - 2x{e}^{\frac{1}{x}} + {e}^{\frac{1}{x}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !