There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (-4{x}^{7} + 4{x}^{3}){\frac{1}{({x}^{4} + 1)}}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{-4x^{7}}{(x^{4} + 1)^{2}} + \frac{4x^{3}}{(x^{4} + 1)^{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{-4x^{7}}{(x^{4} + 1)^{2}} + \frac{4x^{3}}{(x^{4} + 1)^{2}}\right)}{dx}\\=&-4(\frac{-2(4x^{3} + 0)}{(x^{4} + 1)^{3}})x^{7} - \frac{4*7x^{6}}{(x^{4} + 1)^{2}} + 4(\frac{-2(4x^{3} + 0)}{(x^{4} + 1)^{3}})x^{3} + \frac{4*3x^{2}}{(x^{4} + 1)^{2}}\\=&\frac{32x^{10}}{(x^{4} + 1)^{3}} - \frac{28x^{6}}{(x^{4} + 1)^{2}} - \frac{32x^{6}}{(x^{4} + 1)^{3}} + \frac{12x^{2}}{(x^{4} + 1)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !