There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ (2x - 4){\frac{1}{x}}^{2} - 2x\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{2}{x} - \frac{4}{x^{2}} - 2x\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{2}{x} - \frac{4}{x^{2}} - 2x\right)}{dx}\\=&\frac{2*-1}{x^{2}} - \frac{4*-2}{x^{3}} - 2\\=&\frac{-2}{x^{2}} + \frac{8}{x^{3}} - 2\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-2}{x^{2}} + \frac{8}{x^{3}} - 2\right)}{dx}\\=&\frac{-2*-2}{x^{3}} + \frac{8*-3}{x^{4}} + 0\\=&\frac{4}{x^{3}} - \frac{24}{x^{4}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !