There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{({e}^{(x - sin(x))} - 1)}{(x{arcsin(x)}^{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{{e}^{(x - sin(x))}}{xarcsin^{2}(x)} - \frac{1}{xarcsin^{2}(x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{{e}^{(x - sin(x))}}{xarcsin^{2}(x)} - \frac{1}{xarcsin^{2}(x)}\right)}{dx}\\=&\frac{-{e}^{(x - sin(x))}}{x^{2}arcsin^{2}(x)} + \frac{({e}^{(x - sin(x))}((1 - cos(x))ln(e) + \frac{(x - sin(x))(0)}{(e)}))}{xarcsin^{2}(x)} + \frac{{e}^{(x - sin(x))}(\frac{-2(1)}{arcsin^{3}(x)((1 - (x)^{2})^{\frac{1}{2}})})}{x} - \frac{-1}{x^{2}arcsin^{2}(x)} - \frac{(\frac{-2(1)}{arcsin^{3}(x)((1 - (x)^{2})^{\frac{1}{2}})})}{x}\\=&\frac{-{e}^{(x - sin(x))}}{x^{2}arcsin^{2}(x)} - \frac{{e}^{(x - sin(x))}cos(x)}{xarcsin^{2}(x)} + \frac{{e}^{(x - sin(x))}}{xarcsin^{2}(x)} - \frac{2{e}^{(x - sin(x))}}{(-x^{2} + 1)^{\frac{1}{2}}xarcsin^{3}(x)} + \frac{1}{x^{2}arcsin^{2}(x)} + \frac{2}{(-x^{2} + 1)^{\frac{1}{2}}xarcsin^{3}(x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !