Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sin(5)x{({tan(x)}^{2} - x)}^{3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = xsin(5)tan^{6}(x) - 3x^{2}sin(5)tan^{4}(x) + 3x^{3}sin(5)tan^{2}(x) - x^{4}sin(5)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xsin(5)tan^{6}(x) - 3x^{2}sin(5)tan^{4}(x) + 3x^{3}sin(5)tan^{2}(x) - x^{4}sin(5)\right)}{dx}\\=&sin(5)tan^{6}(x) + xcos(5)*0tan^{6}(x) + xsin(5)*6tan^{5}(x)sec^{2}(x)(1) - 3*2xsin(5)tan^{4}(x) - 3x^{2}cos(5)*0tan^{4}(x) - 3x^{2}sin(5)*4tan^{3}(x)sec^{2}(x)(1) + 3*3x^{2}sin(5)tan^{2}(x) + 3x^{3}cos(5)*0tan^{2}(x) + 3x^{3}sin(5)*2tan(x)sec^{2}(x)(1) - 4x^{3}sin(5) - x^{4}cos(5)*0\\=&sin(5)tan^{6}(x) + 6xsin(5)tan^{5}(x)sec^{2}(x) - 12x^{2}sin(5)tan^{3}(x)sec^{2}(x) + 6x^{3}sin(5)tan(x)sec^{2}(x) + 9x^{2}sin(5)tan^{2}(x) - 6xsin(5)tan^{4}(x) - 4x^{3}sin(5)\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return