There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 2sqrt(x - 1) - 2arctan(sqrt(x - 1))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2sqrt(x - 1) - 2arctan(sqrt(x - 1))\right)}{dx}\\=&\frac{2(1 + 0)*\frac{1}{2}}{(x - 1)^{\frac{1}{2}}} - 2(\frac{(\frac{(1 + 0)*\frac{1}{2}}{(x - 1)^{\frac{1}{2}}})}{(1 + (sqrt(x - 1))^{2})})\\=& - \frac{1}{(x - 1)^{\frac{1}{2}}(sqrt(x - 1)^{2} + 1)} + \frac{1}{(x - 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !