There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{{(4x + 8)}^{7}}{(5{x}^{2} - 6)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{(4x + 8)^{7}}{(5x^{2} - 6)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{(4x + 8)^{7}}{(5x^{2} - 6)}\right)}{dx}\\=&\frac{(7(4x + 8)^{6}(4 + 0))}{(5x^{2} - 6)} + (4x + 8)^{7}(\frac{-(5*2x + 0)}{(5x^{2} - 6)^{2}})\\=&\frac{-10(4x + 8)^{7}x}{(5x^{2} - 6)^{2}} + \frac{28(4x + 8)^{6}}{(5x^{2} - 6)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !