There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ a{\frac{1}{(1 - x - ax)}}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{a}{(-x - ax + 1)^{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{a}{(-x - ax + 1)^{2}}\right)}{dx}\\=&(\frac{-2(-1 - a + 0)}{(-x - ax + 1)^{3}})a + 0\\=&\frac{2a^{2}}{(-x - ax + 1)^{3}} + \frac{2a}{(-x - ax + 1)^{3}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !