There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(\frac{{e}^{x}}{1} + x)}^{3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {e}^{(3(x))} + 3x{e}^{(2(x))} + 3x^{2}{e}^{x} + x^{3}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e}^{(3(x))} + 3x{e}^{(2(x))} + 3x^{2}{e}^{x} + x^{3}\right)}{dx}\\=&({e}^{(3(x))}((3(1))ln(e) + \frac{(3(x))(0)}{(e)})) + 3{e}^{(2(x))} + 3x({e}^{(2(x))}((2(1))ln(e) + \frac{(2(x))(0)}{(e)})) + 3*2x{e}^{x} + 3x^{2}({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + 3x^{2}\\=&3{e}^{(3x)} + 3{e}^{(2x)} + 6x{e}^{(2x)} + 6x{e}^{x} + 3x^{2}{e}^{x} + 3x^{2}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !