There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(\frac{{e}^{x}}{(1 + x)})}^{3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{{e}^{(3x)}}{(x + 1)^{3}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{{e}^{(3x)}}{(x + 1)^{3}}\right)}{dx}\\=&(\frac{-3(1 + 0)}{(x + 1)^{4}}){e}^{(3x)} + \frac{({e}^{(3x)}((3)ln(e) + \frac{(3x)(0)}{(e)}))}{(x + 1)^{3}}\\=&\frac{-3{e}^{(3x)}}{(x + 1)^{4}} + \frac{3{e}^{(3x)}}{(x + 1)^{3}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !