There are 1 questions in this calculation: for each question, the 1 derivative of y is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {e}^{(\frac{x}{y})}\ with\ respect\ to\ y:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e}^{(\frac{x}{y})}\right)}{dy}\\=&({e}^{(\frac{x}{y})}((\frac{x*-1}{y^{2}})ln(e) + \frac{(\frac{x}{y})(0)}{(e)}))\\=&\frac{-x{e}^{(\frac{x}{y})}}{y^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !