There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ 3{x}^{3} + 2{x}^{2} + csch(\frac{1}{2})x + sech(\frac{1}{2})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = xcsch(\frac{1}{2}) + 2x^{2} + 3x^{3} + sech(\frac{1}{2})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xcsch(\frac{1}{2}) + 2x^{2} + 3x^{3} + sech(\frac{1}{2})\right)}{dx}\\=&csch(\frac{1}{2}) + x*-csch(\frac{1}{2})coth(\frac{1}{2})*0 + 2*2x + 3*3x^{2} + -sech(\frac{1}{2})tanh(\frac{1}{2})*0\\=&csch(\frac{1}{2}) + 4x + 9x^{2}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( csch(\frac{1}{2}) + 4x + 9x^{2}\right)}{dx}\\=&-csch(\frac{1}{2})coth(\frac{1}{2})*0 + 4 + 9*2x\\=&18x + 4\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 18x + 4\right)}{dx}\\=&18 + 0\\=&18\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 18\right)}{dx}\\=&0\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !