Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 15 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 15th\ derivative\ of\ function\ log_{3{x}^{2}}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = log_{3x^{2}}^{x}\\\\ &\color{blue}{The\ 15th\ derivative\ of\ function:} \\=&\frac{87178291200}{x^{15}ln(3x^{2})} + \frac{1133862589440}{x^{15}ln^{2}(3x^{2})} + \frac{9411763147776}{x^{15}ln^{3}(3x^{2})} + \frac{59709937996800}{x^{15}ln^{4}(3x^{2})} + \frac{306665482905600}{x^{15}ln^{5}(3x^{2})} + \frac{1305523970150400}{x^{15}ln^{6}(3x^{2})} + \frac{4647871203655680}{x^{15}ln^{7}(3x^{2})} + \frac{13838875674624000}{x^{15}ln^{8}(3x^{2})} + \frac{34224436953907200}{x^{15}ln^{9}(3x^{2})} + \frac{69324177162240000}{x^{15}ln^{10}(3x^{2})} + \frac{112395367474790400}{x^{15}ln^{11}(3x^{2})} + \frac{140601148047360000}{x^{15}ln^{12}(3x^{2})} + \frac{127656915369984000}{x^{15}ln^{13}(3x^{2})} + \frac{74987278958592000}{x^{15}ln^{14}(3x^{2})} + \frac{21424936845312000}{x^{15}ln^{15}(3x^{2})} - \frac{174356582400log_{3x^{2}}^{x}}{x^{15}ln(3x^{2})} - \frac{2267725178880log_{3x^{2}}^{x}}{x^{15}ln^{2}(3x^{2})} - \frac{18823526295552log_{3x^{2}}^{x}}{x^{15}ln^{3}(3x^{2})} - \frac{119419875993600log_{3x^{2}}^{x}}{x^{15}ln^{4}(3x^{2})} - \frac{613330965811200log_{3x^{2}}^{x}}{x^{15}ln^{5}(3x^{2})} - \frac{2611047940300800log_{3x^{2}}^{x}}{x^{15}ln^{6}(3x^{2})} - \frac{9295742407311360log_{3x^{2}}^{x}}{x^{15}ln^{7}(3x^{2})} - \frac{27677751349248000log_{3x^{2}}^{x}}{x^{15}ln^{8}(3x^{2})} - \frac{68448873907814400log_{3x^{2}}^{x}}{x^{15}ln^{9}(3x^{2})} - \frac{138648354324480000log_{3x^{2}}^{x}}{x^{15}ln^{10}(3x^{2})} - \frac{224790734949580800log_{3x^{2}}^{x}}{x^{15}ln^{11}(3x^{2})} - \frac{281202296094720000log_{3x^{2}}^{x}}{x^{15}ln^{12}(3x^{2})} - \frac{255313830739968000log_{3x^{2}}^{x}}{x^{15}ln^{13}(3x^{2})} - \frac{149974557917184000log_{3x^{2}}^{x}}{x^{15}ln^{14}(3x^{2})} - \frac{42849873690624000log_{3x^{2}}^{x}}{x^{15}ln^{15}(3x^{2})}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return