There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sqrt(1 - {x}^{2})dx\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = dxsqrt(-x^{2} + 1)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( dxsqrt(-x^{2} + 1)\right)}{dx}\\=&dsqrt(-x^{2} + 1) + \frac{dx(-2x + 0)*\frac{1}{2}}{(-x^{2} + 1)^{\frac{1}{2}}}\\=&dsqrt(-x^{2} + 1) - \frac{dx^{2}}{(-x^{2} + 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !