Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {x}^{2}{e}^{(a - x)} - {a}^{2}ln(x) - a\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{2}{e}^{(a - x)} - a^{2}ln(x) - a\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{2}{e}^{(a - x)} - a^{2}ln(x) - a\right)}{dx}\\=&2x{e}^{(a - x)} + x^{2}({e}^{(a - x)}((0 - 1)ln(e) + \frac{(a - x)(0)}{(e)})) - \frac{a^{2}}{(x)} + 0\\=&2x{e}^{(a - x)} - x^{2}{e}^{(a - x)} - \frac{a^{2}}{x}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return